东原养生网-健康养生

原理1: 把多于或等于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

1、介绍一下抽屉原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。

2、抽屉原理常见的形式

原理1丨把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2丨把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

3、抽屉原理的诀窍

将多于n件的物品任意放入n个抽屉里,则至少有一个抽屉里的物品数不少于2(至少有2件物品在同一个抽屉里)。举例,买了6块(也可以是7块8块)糖,要放在5个小糖匣子里,不管你怎么放,至少有个一个匣子里的糖数不少于2。运用抽屉原理的一般步骤是:根据元素特征,构造抽屉、把元素放入抽屉。

热门精选

大家都在看